Математическое порно | 1563 | |
Ответы ко всем задачам ЕГЭ по математике 2010 года | 793 | |
Тесты ЕГЭ Онлайн | 515 | |
Результаты ЕГЭ по математике | 368 | |
Результаты ЕГЭ по русскому языку | 268 |
День памяти
20 мая 2023 (мифи умер)
Задача про фермера и его кредит
20 мая 2023 (Алекс)
Математическое порно
22 марта 2023 (Angleton)
Российский Союз ректоров
19 февраля 2023 (Hellen Paul )
В помощь юному радисту: Морзянка 1.0
13 ноября 2022 (Сергей)
Знахари и шаманы в МГТУ имени Баумана
5 ноября 2021 (монах из кельи)
Зачет по инженерной графике
24 августа 2020 (Инженерная графика)
Пасынки Вселенной
18 февраля 2020 (Max Brown)
Финансовая пирамида за 10 рублей
7 февраля 2020 (Флора Миллс)
База решений задач ЕГЭ по математике
26 декабря 2019 (Мария)
Все задания • Прототипы |
|
Тип заданий: | |
Решённость: |
Автомобиль, масса которого равна кг, начинает двигаться с ускорением, которое в течение t секунд остаeтся неизменным, и проходит за это время путь
метров. Значение силы (в ньютонах), приложенной в это время к автомобилю, равно
. Определите наибольшее время после начала движения автомобиля, за которое он пройдeт указанный путь, если известно, что сила F, приложенная к автомобилю, не меньше 2400 Н. Ответ выразите в секундах.
Некоторая компания продает свою продукцию по цене руб. за единицу, переменные затраты на производство одной единицы продукции составляют
руб., постоянные расходы предприятия
руб. в месяц. Месячная операционная прибыль предприятия (в рублях) вычисляется по формуле
. Определите наименьший месячный объeм производства q (единиц продукции), при котором месячная операционная прибыль предприятия будет не меньше 500000 руб.
После дождя уровень воды в колодце может повыситься. Мальчик измеряет время t падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле , где h — расстояние в метрах, t — время падения в секундах. До дождя время падения камешков составляло 1,2 с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 с? Ответ выразите в метрах.
Высота над землeй подброшенного вверх мяча меняется по закону , где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее 5 метров?
Небольшой мячик броcают под оcтрым углом к плоcкой горизонтальной поверхноcти земли. Раccтояние, которое пролетает мячик, вычиcляетcя по формуле
(м), где
м/c — начальная cкороcть мяча, а g — уcкорение cвободного падения (cчитайте
м/c
). При каком наименьшем значении угла (в градуcах) мяч перелетит реку шириной 8,45 м?
Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур определяется выражением , где t — время в минутах,
К,
К/мин
,
К/мин. Известно, что при температуре нагревателя свыше 1750 К прибор может испортиться, поэтому его нужно отключать. Определите, через какое наибольшее время после начала работы нужно отключать прибор. Ответ выразите в минутах.
Для поддержания навеcа планируетcя иcпользовать цилиндричеcкую колонну. Давление P (в паcкалях), оказываемое навеcом и колонной на опору, определяетcя по формуле , где
кг — общая маccа навеcа и колонны, D — диаметр колонны (в метрах). Cчитая уcкорение cвободного падения
м/c
, а
, определите наименьший возможный диаметр колонны, еcли давление, оказываемое на опору, не должно быть больше 400000 Па. Ответ выразите в метрах.
Для определения эффективной температуры звeзд используют закон Стефана–Больцмана, согласно которому мощность излучения нагретого тела P, измеряемая в ваттах, прямо пропорциональна площади его поверхности и четвeртой степени температуры: , где
— постоянная, площадь S измеряется в квадратных метрах, а температура T — в градусах Кельвина. Известно, что некоторая звезда имеет площадь
м
, а излучаемая ею мощность P не менее
Вт. Определите наименьшую возможную температуру этой звезды. Приведите ответ в градусах Кельвина.
Расстояние от наблюдателя, находящегося на высоте h над землeй, до видимой им линии горизонта вычисляется по формуле , где
км — радиус Земли. Человек, стоящий на пляже, видит горизонт на расстоянии 6,4 километров. К пляжу ведeт лестница, каждая ступенька которой имеет высоту 20 см. На какое наименьшее количество ступенек нужно подняться человеку, чтобы он увидел горизонт на расстоянии не менее 9,6 километров?
Скорость автомобиля, разгоняющегося с места старта по прямолинейному отрезку пути длиной l км с постоянным ускорением a км/ч, вычисляется по формуле
. Определите, с какой наименьшей скоростью будет двигаться автомобиль на расстоянии 0,8 километра от старта, если по конструктивным особенностям автомобиля приобретаемое им ускорение не меньше 9000 км/ч
. Ответ выразите в км/ч.
Tweet |