Летопись МИФИ

while (me.alive) you.learn();


ЕГЭ-2024
Тесты ЕГЭ Онлайн
Задачи ЕГЭ по математике
Решения ЕГЭ по математике

Вступительные экзамены и специальности
Фишки для Корума:
Рейтинг пользователей Корума
Настроение • Модераторы
Темы • Картина дня • Realtime
Прочие фишки:
Нецензурная брань
Народная орфография
Морзянка онлайн • Калькулятор
Анаграммы • Игра в города

Загрузка календаря

Новые записи

20.05Задача про фермера и его кредит
26.01Актуализация сервисов ЕГЭ по математике 2014 года
05.11Поломалось
28.08Смена парадигмы
18.07Как вести себя в приличном обществе, предварительно обмочив штаны
оглавление »

Лучшие записи

1.Математическое порно1563
2.Ответы ко всем задачам ЕГЭ по математике 2010 года793
3.Тесты ЕГЭ Онлайн515
4.Результаты ЕГЭ по математике368
5.Результаты ЕГЭ по русскому языку268

О чем тут?

NX VBAB Webometrics igjhs А1-08 Абитуриенты Бачинский ВКонтакте Ващенифтему Волга Диплом Дрессировка преподов Дума ЕГЭ Жизнь Забабахал Инновации История Кафедра 26 Кларк Корум Лженаука МИФИ МИФИсты Морзянка НИЯУ Нанотехнологии Наука Образование Омоймоск ПЦ Поздравляю Поиск Президент Преподы Приколы Программное обеспечение Рейтинги Русский язык Сессия Смерть Статистика Стихи Сувениринг Тест Учеба Учебные материалы ФЯУ Физтех Фотки Ядерщики матанализ

Комментарии

День памяти
  20 мая 2023 (мифи умер)

Задача про фермера и его кредит
  20 мая 2023 (Алекс)

Математическое порно
  22 марта 2023 (Angleton)

Российский Союз ректоров
  19 февраля 2023 (Hellen Paul )

В помощь юному радисту: Морзянка 1.0
  13 ноября 2022 (Сергей)

Знахари и шаманы в МГТУ имени Баумана
  5 ноября 2021 (монах из кельи)

Зачет по инженерной графике
  24 августа 2020 (Инженерная графика)

Пасынки Вселенной
  18 февраля 2020 (Max Brown)

Финансовая пирамида за 10 рублей
  7 февраля 2020 (Флора Миллс)

База решений задач ЕГЭ по математике
  26 декабря 2019 (Мария)

$kib@t®onЪ
Сейчас на скибатроне
Шедевры
Я ищу слово,  «» 

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
a b c d e f g h i j k l m n o p q r s t u v w x y z

Слово «находим»
впервые сказано пользователем jorael 21.09.2005 в 22:35,
и с тех пор употреблялось 241 раз.
СообщенияПользователиПользователи (top10)Проверить

Сообщения со словом
«находим»

Запрос выполнился за 0.0407 сек.
  1. 22.10.2013, 17:13. Лопотам в теме
    «Ответы Православного на вопросы о Православии»
    ... подчинение своей воли воле божьей совсем иные учения мы находим в других христианских вероисповеданиях где...
  2. 16.10.2013, 09:53. М. Певунов в теме
    «Простое доказательство ТФ для всех n»
    ... уравнении ферма и получаем квадратное уравнение по а находим а как корень квадратного уравнения 1 a 3n b 3n2 c n3 m3 находим подкоренное выражение выносим за скобки n умножаем...
  3. 11.10.2013, 12:26. М. Певунов в теме
    «Простое доказательство ТФ для всех n»
    ... уравнении ферма и получаем квадратное уравнение по а находим а как корень квадратного уравнения 1 a 3n b 3n2 c n3 m3 находим подкоренное выражение выносим за скобки n умножаем...
  4. 06.10.2013, 02:22. Schufter в теме
    «ОДУ. Уравнения в полных дифференциалах. Интегрирующий множитель»
    ... уравнения следует сравнивая с предыдущим выражением находим что константу интегрирования можно не писать всё равно функция определена с точностью до константы получился общий интеграл уравнения пример 2 подбор интегрирующего множителя это уравнение не относится к уравнениям в полных дифференциалах однако к нему несложно подобрать интегрирующий множитель обращает на себя внимание комбинация это числитель дифференциала дроби отличается только отсутствием знаменателя поэтому разделим всё уравнение на конечно подбор интегрирующего множителя возможен далеко не всегда посмотрим как можно было его найти в данном случае вычислим учитывая что функция зависит только от переменной приходим к выводу что интегрирующий множитель можно искать как функцию только переменной см формулу 2 и комментарий к ней применение указанной формулы приводит к интегрирующему множителю который мы сразу подобрали пример 3 возможность нахождения различных интегрирующих множителей снова попробуем сначала подобрать интегрирующий множитель бросается в глаза комбинация наличие в уравнении слагаемого наводит на мысль разделить уравнение на итак общий интеграл найден посмотрим что будет если искать интегрирующий множитель по указанной в теоретическом минимуме методике снова работает формула 2 приводя к интегрирующему множителю как видно значительно отличающемуся от использованного нами ранее получилось уравнение не представляет труда установить что это уравнение в полных дифференциалах т е существует функция такая что отсюда находим производную которая с другой стороны равна...
  5. 02.10.2013, 01:44. М. Певунов в теме
    «Простое доказательство ТФ для всех n»
    ... относительно а квадратное уравнение вида 1 имеет решение 2 находим подкоренное выражение выносим за скобки n умножаем...
  6. 28.09.2013, 17:54. М. Певунов в теме
    «Простое доказательство ТФ при n = 3»
    ... относительно а квадратное уравнение вида 1 имеет решение 2 находим подкоренное выражение выносим за скобки 24n...
  7. 27.09.2013, 00:50. Schufter в теме
    «УМФ. Метод Фурье (стоячих волн)»
    ... при этом легко вычислить что совершенно аналогично находим из второго начального условия можно выписать окончательное решение упомянем о физическом смысле задачи уравнение может описывать в частности колебания струны длиной с закреплёнными концами начальные условия представляют собой начальные смещения и скорости точек струны собственные функции задачи штурма-лиувилля при этом описывают т н собственные колебания струны при которых на длине струны укладывается целое число полуволн соответственно решение представляется в виде линейной комбинации собственных колебаний всех возможных в такой ситуации частот комбинации стоячих волн отсюда и другое название метода 2 неоднородное уравнение с однородными краевыми и начальными условиями рассматривается задача усложнили задачу по сравнению с задачей предыдущего пункта добавлением в уравнение неоднородности упростились правда начальные условия первым этапом решения является нахождение собственных функций задачи штурма-лиувилля возникающей при решении соответствующего однородного уравнения из-за неоднородности в уравнении искать решение в виде предложенном в предыдущем пункте не получится решение ищут в виде где функции ещё подлежат установлению представим неоднородность уравнения в виде умножим скалярно всё исходное уравнение задачи на функцию произведение понимается в том же смысле что и в предыдущем пункте для дальнейшего преобразования заметим что а так как то уравнение принимает вид используя разложение неоднородности уравнения и искомой функции по функциям с учётом ортогональности последних находим это обыкновенное дифференциальное уравнение которое решается вместе с начальными условиями эти условия следуют из начальных условий к исходной задаче решая данную задачу коши находим функции и подставляем их в общий вид решения 3 неоднородное уравнение с неоднородными начальными и однородными краевыми условиями рассматривается задача ещё усложнили задачу теперь к неоднородности уравнения добавляются неоднородные начальные условия в этом случае применяется метод редукции используемый в математической физике не так уж редко мы разобьём задачу на две более простые представим искомую функцию в виде суммы задача тогда запишется так соизмеряя свои желания и возможности мы осознаём что мы умеем решать неоднородное уравнение с нулевыми начальными условиями и однородное уравнение с ненулевыми начальными условиями поэтому исходную задачу разобьём на две и каждую из этих задач мы в состоянии решить из них мы найдём функции и которые в сумме дадут искомую функцию 4 неоднородное уравнение с неоднородными начальными и краевыми условиями переходим к самой плохой задаче уравнение неоднородное все дополнительные условия ненулевые применим метод редукции вспомогательная функция в этот раз примет на себя краевые условия запишем и потребуем чтобы в силу таких требований зависимость функции от переменной практически определена а вот зависимость от переменной пока ничем не ограничена чтобы не усложнять себе задачу выберем эту функцию линейной по переменной тогда вторая производная выберем функцию тогда задача для функции получается следующей такую задачу мы уже обсудили выше метод фурье неудобен тем что решение получается в виде ряда который скорее всего суммировать не удастся сходимость ряда конечно гарантирована но она может оказаться медленной т е ограничиться небольшим числом слагаемых при использовании решения в конкретных задачах будет нельзя ошибка окажется слишком большой есть ещё ограничение в применимости метода это касается задач не на отрезке а на луче или прямой и задач на плоскости или в пространстве заданных в области сложной формы под сложной формой понимается форма границы например не совпадающая с координатными линиями какой-либо системы координат мы не рассматривали применение метода фурье с использованием криволинейных координат так как обычно это приводит к появлению в ответе специальных функций а это предмет отдельного обсуждения если же специальные функции не возникают то принципиальных отличий от обсуждавшихся здесь случаев нет замечание метод был продемонстрирован на примере волнового уравнения уравнения гиперболического типа но он хорошо работает и для других типов уравнений скажем для уравнения теплопроводности или уравнения лапласа правда возникающие в процессе разделения переменных дифференциальные уравнения иногда приводят к функциям не являющимся элементарными см например здесь примеры пример 1 уравнение теплопроводности однородные краевые условия ищем решение в виде подставляем этот вид решения в уравнение получаем задачу штурма-лиувилля собственные значения и функции этой задачи переходим к уравнению для функции общее решение уравнения ищем в виде ряда учитываем начальное условие для определения неизвестных коэффициентов скалярно умножаем обе части на функцию вычисляем скалярный квадрат функции и интеграл в правой части последнего равенства таким образом следовательно заметим что в случае чётного индекса суммирования соответствующее слагаемое обратится в нуль поэтому ответ можно упростить пример 2 уравнение пуассона однородные краевые условия в случае неоднородного уравнения см п 2 решение ищем в виде разложения по собственным функциям задачи штурма-лиувилля возникающей при решении однородного уравнения в данном случае следует рассмотреть уравнение лапласа и применить к нему стандартную схему разделения переменных так как есть полная симметрия между обеими переменными то можно выбрать любую функцию например решая задачу с краевыми условиями собственные функции этой задачи возвращаемся к неоднородному уравнению и ищем его решение в виде скалярно умножаем уравнение пуассона на функцию замечаем что вычисляем скалярное произведение кроме того приходим к обыкновенному дифференциальному уравнению с краевыми условиями это уравнение можно решать например поиском решения однородного уравнения а потом частного решения неоднородного уравнения опуская детали решения приводим ответ можно записать окончательный ответ замечание в принципе можно было решать задачу несколько проще проводя разложения по функциям тогда решение являлось бы двойным рядом пример 3 неоднородное уравнение теплопроводности однородные краевые условия применяем метод редукции записывая функция примет на себя неоднородность уравнения а функция неоднородность в начальном условии начнём с задачи для функции применяем стандартную схему разделения переменных подставляя этот вид решения в уравнение приходим к задаче штурма-лиувилля для функции для функции имеем уравнение общее решение уравнения ищем в виде ряда используем начальное условие как видно отличен от нуля только один коэффициент таким образом переходим ко второй задаче ищем её решение в виде скалярно умножаем уравнение для функции на используем следующие соотношения получаем уравнение с начальным условием решение этой задачи следовательно учтём что в этом ряде слагаемые отвечающие чётным значениям индекса суммирования обращаются в нуль запишем решение всей исходной задачи пример 4 уравнение теплопроводности неоднородные краевые условия так как краевые условия неоднородные то применяем метод редукции где функция примет на себя неоднородность из краевых условий как говорилось в п 4 эту функцию можно выбрать в виде тогда задача для функции имеет вид получилось неоднородное уравнение с однородными краевыми условиями и неоднородным начальным условием снова применяем редукцию решаем задачу для функции ищем решение в виде для функции получаем задачу штурма-лиувилля с собственными значениями и функциями для функции имеем уравнение таким образом функцию ищем в виде учитываем начальное условие находим коэффициенты разложения таким образом наконец...
  8. 23.09.2013, 10:56. АКудияр в теме
    «Найти объем тела»
    ... гуглом надо уметь пользоваться вбив вопрос задачи находим кучу материала
  9. 21.09.2013, 19:06. vkadimir2012 в теме
    «Религиозные воззрения vkadimir2012»
    ... про это в различных религиозных источниках а там мы находим следующее в 30 лет на него спустился дух святой...
  10. 14.09.2013, 18:13. Schufter в теме
    «МА. Дифференциальные операции векторного анализа»
    ... кронекера во втором полагаем аналогично окончательно находим пример 6 градиент скалярного произведения двух...

← раньше

позже →


Рейтинг блогов



 

откуда • куда • где • eureka!
Бездарно потраченное время:
105800 дней