Летопись МИФИ

Торжественное схождение с ума


ЕГЭ-2024
Тесты ЕГЭ Онлайн
Задачи ЕГЭ по математике
Решения ЕГЭ по математике

Вступительные экзамены и специальности
Фишки для Корума:
Рейтинг пользователей Корума
Настроение • Модераторы
Темы • Картина дня • Realtime
Прочие фишки:
Нецензурная брань
Народная орфография
Морзянка онлайн • Калькулятор
Анаграммы • Игра в города

Загрузка календаря

Новые записи

20.05Задача про фермера и его кредит
26.01Актуализация сервисов ЕГЭ по математике 2014 года
05.11Поломалось
28.08Смена парадигмы
18.07Как вести себя в приличном обществе, предварительно обмочив штаны
оглавление »

Лучшие записи

1.Математическое порно1563
2.Ответы ко всем задачам ЕГЭ по математике 2010 года793
3.Тесты ЕГЭ Онлайн515
4.Результаты ЕГЭ по математике368
5.Результаты ЕГЭ по русскому языку268

О чем тут?

NX VBAB Webometrics igjhs А1-08 Абитуриенты Бачинский ВКонтакте Ващенифтему Волга Диплом Дрессировка преподов Дума ЕГЭ Жизнь Забабахал Инновации История Кафедра 26 Кларк Корум Лженаука МИФИ МИФИсты Морзянка НИЯУ Нанотехнологии Наука Образование Омоймоск ПЦ Поздравляю Поиск Президент Преподы Приколы Программное обеспечение Рейтинги Русский язык Сессия Смерть Статистика Стихи Сувениринг Тест Учеба Учебные материалы ФЯУ Физтех Фотки Ядерщики матанализ

Комментарии

День памяти
  20 мая 2023 (мифи умер)

Задача про фермера и его кредит
  20 мая 2023 (Алекс)

Математическое порно
  22 марта 2023 (Angleton)

Российский Союз ректоров
  19 февраля 2023 (Hellen Paul )

В помощь юному радисту: Морзянка 1.0
  13 ноября 2022 (Сергей)

Знахари и шаманы в МГТУ имени Баумана
  5 ноября 2021 (монах из кельи)

Зачет по инженерной графике
  24 августа 2020 (Инженерная графика)

Пасынки Вселенной
  18 февраля 2020 (Max Brown)

Финансовая пирамида за 10 рублей
  7 февраля 2020 (Флора Миллс)

База решений задач ЕГЭ по математике
  26 декабря 2019 (Мария)

$kib@t®onЪ
Сейчас на скибатроне
Шедевры
Я ищу слово,  «» 

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я
a b c d e f g h i j k l m n o p q r s t u v w x y z

Слово «кривая»
впервые сказано пользователем P$ych0 Dr@ke 30.06.2005 в 15:38,
и с тех пор употреблялось 238 раз.
СообщенияПользователиПользователи (top10)Проверить

Сообщения со словом
«кривая»

Запрос выполнился за 0.0180 сек.
  1. 21.09.2013, 14:00. lamen в теме
    «Почему не стоит поступать в МИФИ»
    ... механистического вызубривания получаются дивные перлы типа кривая спектральной чувствительности газа речь о глазе...
  2. 18.09.2013, 01:18. AIS в теме
    «Ответы Православного на вопросы о Православии»
    ... ссылке открывается и то не сразу поскольку ссылка кривая какой-то безымянный реферат из базы данных липовых...
  3. 21.08.2013, 02:01. Schufter в теме
    «МА. Сравнение функций. О-символика»
    ... каждый ответ будет иллюстрирован двумя графиками чёрная кривая график заданной в условии функции красная кривая график найденной главной части замечание приведённые...
  4. 10.08.2013, 01:10. Schufter в теме
    «МА. Криволинейные интегралы второго рода»
    ... этом есть важное отличие от интеграла первого рода кривая разбивается на частичные дуги длиной на каждой частичной дуге выбирается точка составляется сумма где проекция частичной дуги на ось абсцисс причём так как на кривой задано направление то эта проекция может быть как положительной так и отрицательной аналогично определяются величины и как проекции частичной дуги на оси ординат и аппликат затем составляется сумма по всем частичным дугам и выполняется предельный переход с устремлением длины наибольшей частичной дуги к нулю предел является криволинейным интегралом второго рода легко указать связь построенного таким образом интеграла с интегралом построенным в первом пункте дело в том что где длина малой дуги кривой а угол который составляет данная малая дуга форму которой приближённо можно считать прямолинейной с осью абсцисс аналогично где углы которые малая дуга образует с осями ординат и аппликат таким образом вводя вектор касательной к кривой запишем и интеграл примет вид в котором он был получен в первом пункте следует заметить что изменение направления интегрирования приведёт к тому что все проекции частичных дуг изменят знак на противоположный а значит если интегрирование проводится по замкнутому контуру то такой интеграл обычно называют циркуляцией и обозначают знаком 3 вычисление криволинейного интеграла второго рода методика вычисления криволинейного интеграла второго рода предельно проста следует параметрически задать кривую по которой проводится интегрирование тогда эти соотношения позволят определить связь дифференциалов с соответствующим изменением параметра на практике эта громоздкая формула применяется достаточно просто следует только вместо переменных всюду подставить их выражения через параметр и правильно определить пределы интегрирования не перепутав их порядок от этого зависит знак интеграла в случае криволинейного интеграла второго рода ставится ещё один вопрос пределы интегрирования в интеграле всегда определены интеграл вычисляется вдоль заданной кривой от некоторой точки до некоторой точки однако может ли быть такое что интеграл зависит только от точек и но не от кривой их соединяющей здесь можно указать физический пример работа силы тяжести зависит только от того в какой точке находилось тело в поле тяжести и в какую точку оно перемещено но не от пути по которому произошло перемещение существует критерий независимости величины криволинейного интеграла второго рода от формы пути интеграл не зависит от формы пути если выполняются три соотношения есть и другая эквивалентная формулировка подынтегральное выражение должно быть полным дифференциалом некоторой функции отметим что указанные условия требуют некоторых уточнений в случае когда контур интегрирования располагается в многосвязной области т е если в рассматриваемой области есть дыры 4 формула грина с криволинейным интегралом второго рода связана важная формулы имеющая теоретические и практические приложения формула грина где контур ограничивает область обход контура должен быть таким чтобы область оставалась слева с помощью формулы грина можно вычислять площади фигур легко показать что замечание в векторном анализе условие независимости интеграла от формы пути формулируется несколько проще требуется равенство нулю ротора векторного поля которое интегрируется в таком виде это условие легче запомнить примеры вычисления криволинейных интегралов второго рода пример 1 интеграл вдоль ломаной с параллельными координатным осям звеньями вычислить интеграл по ломаной oabc интеграл распадается на три части по отрезкам oa ab bc последовательно вычисляем каждый из них и складываем результаты на отрезке oa ордината и аппликата не меняются и равны нулю абсцисса меняется в пределах от нуля до поэтому на отрезке ab постоянны абсцисса и аппликата причём аппликата нулевая ордината меняется в пределах от нуля до наконец на отрезке bc постоянны абсцисса и ордината а аппликата меняется в пределах от нуля до пример 2 интеграл вдоль прямой в пространстве вычислить интеграл по отрезку прямой проходящей через точки и прямая в пространстве может быть задана параметрически отрезку ab соответствуют пределы интегрирования от нуля до единицы подставляем выражения для переменных в интеграл пример 3 интеграл вдоль заданной явным уравнением кривой на плоскости вычислить интеграл по дуге параболы от точки до точки кривая вдоль которой проводится интегрирование задана явно поэтому нужно только подставить вместо переменной в интеграле правую часть уравнения параболы пример 4 интеграл вдоль параметрически заданной кривой вычислить интеграл вдоль винтовой линии от точки пересечения линии с плоскостью до точки пересечения линии с плоскостью кривая вдоль которой проводится интегрирование задана параметрически нужно только подставить выражения для переменных через параметр в интеграл и проинтегрировать по параметру в пределах от нуля до пример 5 восстановление функции по её полному дифференциалу зная полный дифференциал функции восстановить функцию вопрос о восстановлении функции по её полному дифференциалу тесно связан с независимостью криволинейного интеграла от формы пути причина в критерии независимости интеграла от пути см п 3 итак криволинейный интеграл от полного дифференциала не зависит от формы контура интегрирования нужно только выбрать начальную и конечную точку контура за начальную точку примем точку с координатами а за конечную точку с координатами это будут аргументы восстановленной функции теперь о выборе формы контура так как от неё ничего не зависит то она должна быть максимально удобной проще всего интегрировать вдоль отрезка прямой параллельной оси координат в этом случае две координаты фиксированы а меняется только третья поэтому выберем контур состоящий из трёх частей на первом отрезке интегрируем вдоль оси абсцисс от точки до точки на втором отрезке интегрируем вдоль оси ординат от точки до точки наконец на третьем отрезке интегрируем вдоль оси аппликат от точки до точки см рис 3 полученные выражения нужно сложить несложно видеть что все слагаемые содержащие одновременно координаты начальной и конечной точек взаимно уничтожаются остаётся если считать координаты постоянными а координаты переменными текущими то последние четыре слагаемые являются константами а функция по дифференциалу восстанавливается только с точностью до константы поэтому ответ в задаче пример 6 применение формулы грина к вычислению площадей плоских фигур вычислить площадь фигуры ограниченной астроидой воспользуемся формулой для площади фигуры следующей из формулы грина для этого нужно параметрическое уравнение астроиды астроида изображена на рис 4 это симметричная относительно начала координат кривая поэтому достаточно найти площадь четверти ограниченной...
  5. 08.08.2013, 19:31. Schufter в теме
    «МА. Криволинейные интегралы первого рода и поверхностные интегралы первого рода»
    ... первого рода рассмотрим функцию определённую на кривой кривая предполагается спрямляемой напомним что это означает грубо говоря что в кривую можно вписать ломаную со сколь угодно малыми звеньями причём в пределе бесконечно большого числа звеньев длина ломаной должна оставаться конечной кривая разбивается на частичные дуги длиной и на каждой из дуг выбирается точка составляется произведение проводится суммирование по всем частичным дугам затем осуществляется предельный переход с устремлением длины наибольшей из частичных дуг к нулю предел является криволинейным интегралом первого рода важной особенностью этого интеграла прямо следующей из его определения является независимость от направления интегрирования т е 2 определение поверхностного интеграла первого рода рассмотрим функцию определённую на гладкой или кусочно-гладкой поверхности поверхность разбивается на частичные области с площадями в каждой такой области выбирается точка составляется произведение проводится суммирование по всем частичным областям затем осуществляется предельный переход с устремлением диаметра наибольшей из всех частичных областей к нулю предел является поверхностным интегралом первого рода 3 вычисление криволинейного интеграла первого рода методика вычисления криволинейного интеграла первого рода просматривается уже из формальной его записи а фактически следует непосредственно из определения интеграл сводится к определённому только нужно записать дифференциал дуги кривой вдоль которой проводится интегрирование начнём с простого случая интегрирования вдоль плоской кривой заданной явным уравнением в этом случае дифференциал дуги затем в подынтегральной функции выполняется замена переменной и интеграл принимает вид где отрезок отвечает изменению переменной вдоль той части кривой по которой проводится интегрирование очень часто кривая задаётся параметрически т е уравнениями вида тогда дифференциал дуги соответственно после замены переменных в подынтегральной функции криволинейный интеграл вычисляется следующим образом где части кривой по которой проводится интегрирование соответствует отрезок изменения параметра несколько сложнее обстоит дело в случае когда кривая задаётся в криволинейных координатах этот вопрос обычно обсуждается в рамках дифференциальной геометрии приведём формулу для вычисления интеграла вдоль кривой заданной в полярных координатах уравнением с чисто теоретической точки зрения достаточно просто понять что криволинейный интеграл первого рода должен сводиться к своему частному случаю определённому интегралу действительно выполняя замену которая диктуется параметризацией кривой вдоль которой вычисляется интеграл мы устанавливаем взаимно-однозначное отображение между частью данной кривой и отрезком изменения параметра а это и есть сведение к интегралу вдоль прямой совпадающей с координатной осью определённому интегралу 4 вычисление поверхностного интеграла первого рода после предыдущего пункта должно быть ясно что одна из основных частей вычисления поверхностного интеграла первого рода запись элемента поверхности по которой выполняется интегрирование опять-таки начнём с простого случая поверхности заданной явным уравнением тогда выполняется замена в подынтегральной функции и поверхностный интеграл сводится к двойному где область плоскости в которую проектируется часть поверхности по которой проводится интегрирование однако часто задать поверхность явным уравнением невозможно и тогда она задаётся параметрически т е уравнениями вида элемент поверхности в этом случае записывается уже сложнее соответствующим образом записывается и поверхностный интеграл где область изменения параметров соответствующая части поверхности по которой проводится интегрирование 5 физический смысл криволинейного и поверхностного интегралов первого рода обсуждаемые интегралы обладают очень простым и наглядным физическим смыслом пусть имеется некоторая кривая линейная плотность которой не является константой а представляет собой функцию точки найдём массу этой кривой разобьём кривую на множество малых элементов в пределах которых её плотность можно приближённо считать константой если длина маленького кусочка кривой равна то его масса где любая точка выбранного кусочка кривой любая так как плотность в пределах этого кусочка приближённо предполагается постоянной соответственно масса всей кривой получится суммированием масс отдельных её частей чтобы равенство стало точным следует перейти к пределу разбиения кривой на бесконечно малые части но это и есть криволинейный интеграл первого рода аналогично разрешается вопрос о полном заряде кривой если известна линейная плотность заряда эти рассуждения легко переносятся на случай неравномерно заряженной поверхности с поверхностной плотностью заряда тогда заряд поверхности есть поверхностный интеграл первого рода замечание громоздкая формула для элемента поверхности заданной параметрически неудобна для запоминания другое выражение получается в дифференциальной геометрии оно использует т н первую квадратичную форму поверхности примеры вычисления криволинейных интегралов первого рода пример 1 интеграл вдоль прямой вычислить интеграл вдоль отрезка прямой проходящей через точки и сначала запишем уравнение прямой вдоль которой проводится интегрирование найдём выражение для вычисляем интеграл пример 2 интеграл вдоль кривой на плоскости вычислить интеграл по дуге параболы от точки до точки заданные точки и позволяют выразить переменную из уравнения параболы вычисляем интеграл однако можно было проводить вычисления и иначе пользуясь тем что кривая задана уравнением разрешённым относительно переменной...
  6. 07.08.2013, 11:15. VAL в теме
    «SOS, что делать?»
    ... во время учебы работа почти по специальности куда кривая жизни в итоге вывезет это точно хотя кто-то...
  7. 05.07.2013, 23:40. Schufter в теме
    «АГ. Приведение уравнения алгебраической линии второго порядка к каноническому виду»
    ... переходе к системе координат по отношению к которой кривая будет расположена так как показано на рис 1...
  8. 16.06.2013, 19:51. Luno в теме
    «Московский метрополитен изнутри.»
    ... хреново я уснул а поезд прёт под девяносто впереди кривая изогнулась грозно если поезд с рельс сойдет...
  9. 30.05.2013, 22:42. Ne fizik в теме
    «Что на самом деле означает постулат Эйнштейна о постоянстве скорости света?»
    ... траектория мт на поверхности шара вовсе есть сожная кривая уходим из плоскости тазика в объем природы с...
  10. 18.05.2013, 00:54. Акельев Н. в теме
    «СТО– величайшая афера в истории физики»
    ... флуктуаций вопрос не в синусоиде а в том будет ли кривая симметричной можно ли по ней будет определить...

← раньше

позже →


Рейтинг блогов



 

откуда • куда • где • eureka!
Бездарно потраченное время:
105844 дня